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1. INTRODUCTION 

1. 1 Discussion of the Problem 

The problem of radiative heat t r a n s f e r  to  the sur face  of a space 

vehicle during en t ry  into a planetary a tmosphere  h a s  gained in  impor t -  

ance with the establ ishment  of national p r o g r a m s  for  lunar  exploration 

and miss ions  to  the nea r  planets.  

these miss ions  will  be well  above the E a r t h  orb i ta l  value and, therefore ,  

the flow in  the stagnation region of a blunt vehicle will r each  high p r e s s u r e  

and tempera ture  levels.  

of radiant ene rgy  with intensit ies and spectral distributions c h a r a c t e r i s t i c  

of the chemica l  species  present  in the flow. 

levels of i n t e r e s t ,  we have shown in Fig.  1 .1  a n  altitude-velocity m a p  

for E a r t h  r e -en t ry  on which l ines  of constant blunt body stagnation density, 

temperature  and ion mole  fraction (assuming equilibrium thermochemis t ry)  

a r e  drawn, 

be seen that equilibrium stagnation t empera tu res  of m o r e  than 14,000 K 

and relatively high degree of ionization will  be reached  for  the r e -en t ry  

from a M a r s  mission.  

ceases  to be only one of convection a c r o s s  the boundary layer .  

energy emit ted by the gas  in  the shock layer  will  be absorbed by the sur face  

of the vehicle adding to the total  heat t r ans fe r .  At sufficiently high en t ry  

velocit ies this  mode of heat t ransfer  will  eventually dominate the overa l l  

a e  r odynam i c  heating . 

The en t ry  velocit ies for  sorne of 

Such gas  can  be expected to emi t  la rge  amounts 

To i l lus t ra te  the proper ty  

Two hypothetical vehicle t r a j e c t o r i e s  a re  a l so  shown, I t  can  

0 

At these conditions the heat  t r a n s f e r  problem 

The radiative 

-1 - 



In consider ing the contribution of radiat ive t r anspor t  p r o c e s s e s  to 

the heat t r ans fe r  experienced by an  en t ry  vehicle ,  a dist inction is made  

between equilibrium radiat ion originating in  the shock-processed  gas ,  

which a f te r  passing through the bow wave has  re laxed to i t s  s ta te  of 

thermochemica l  equi l ibr ium, and the non-equilibrium radiat ion,  which 

i s  emit ted f rom the shock front  in which the impar ted  energy  has  not been 

dis t r ibuted among the var ious available degrees  of f reedom. The relat ive 

contributions of these p r o c e s s e s  depend mainly on the flight altitude 

(ambient gas density) and to a l e s s e r  degree on the flight velocity. 

The radiance of high t empera tu re  air i s  a r e s u l t  of s e v e r a l  complex 

physical  p rocesses  and,  although the fundamentals have been studied 

theoret ical ly  in detai l ,  i t s  predict ion depends to a considerable  extent 

on many approximating assumptions.  The re fo re ,  exper imenta l  data a r e  

required to evaluate the predict ions.  

The rma l  radiation f rom en t ry  body flow fields h a s  been investigated 

extensively for  many years .  

o rb i ta l  and sub-orb i ta l  E a r t h  entry.  

superorb i ta l  en t ry  veloci t ies ,  many recent  theoret ical  s tudies  and labor  - 

a tory  and flight exper iments  have been concentrated in  this  reg ime.  

Through a simplified ana lys i s  of the radiat ive recombination atomic 

deionization and f r ee  - f ree  t rans i t ion  mechan i sms ,  Breene  (1)  ( 2 )  and his  

assoc ia tes  predicted that f o r  t empera tu re  and density levels  assoc ia ted  

E a r l y  s tudies  were  la rge ly  concerned with 

With the increased  in t e re s t  in  

- 2 -  



with a hypervelocity e n t r y a  la rge  f rac t ion  of the energy  radiated f rom a 

thin layer  of gas (a 1 cm layer  thickness was generally a s sumed)  would 

be a t  wavelengths below 0 .  29. This was fur ther  confirmed analytically 

by Biberman ( 3 )  (4)  and his assoc ia tes  who have published theoret ical  

resu l t s  for high temperature  a i r  that  showed the importance of the vacuum 

UV spec t ra l  region. This work also concluded that the deionization and 

f r ee - f r ee  (brehmstrahlung) mechan i sms  w e r e  important and also that 

atomic l ines  radiation would be a s t rong contributor to high tempera ture  

gas  radiance over important ranges of t empera tu re ,  density and gas  layer  

thickne s s . 
To i l lustrate  this we a r e  showing in  F i g .  1 .  2 two theoret ical  spec t ra l  

distributions of a i r  radiance,  one f o r  a i r  a t  7000°K and 1 a tm (1) and the 

other a t  14000°K and the same  p r e s s u r e  without the contribution of spec t ra l  

l ines (3) .  The spec t rum a t  the lower tempera ture  contains mos t ly  emission 

f r o m  molecular  bands in the U V ,  visible and IR range. 

is expected below 1800 A due to the l imitation of blackbody radiation. 

Very  l i t t le  emission 
0 

At 

the higher tempera ture ,  however,  the free-bound t ransi t ions in the vacuum 

UV p a r t  of the spec t rum a r e  ve ry  pronounced. 

to the theoretical  aspects of this problem have been made;  for  example,  

s ee  Refs.  5 - 11. 

Several  other contributions 

1 . 2  Experimental  Approach 

The study of radiative proper t ies  of high tempera ture  gases  is confronted 

with the problem of producing uniform samples  of the gas at approximately 

- 3 -  



constant tempera ture  and p r e s s u r e  for  a sufficient length of t ime consistent 

with the response charac te r i s t ics  of the radiation senso r s .  

One of the techniques which was found to sat isfy these requirements  

was the generation of the t e s t  gas by a blunt model  i m m e r s e d  in  the flow 

region behind an incident shock wave produced by a sudden expansion of 

dr iver  gas in  the electr ical ly  driven shock tube. 

region of such a model  is charac te r ized  by the enthalpy and density c o r -  

responding to the incident shock velocity and the init ial  p r e s s u r e  of the 

gas in  the driven section of the tube. 

shock relations determines the d i rec t  correspondence to flight conditions. 

In the present  study a radiation sensor  was located inside a model  viewing 

a well defined volume of uniform gas which extends f rom the model  to the 

bow shock. 

The flow in the stagnation 

Consideration of one-dimensional 

The measu remen t s  in this configuration were  based upon the develop- 

ment  of a sys tem capable of sensing total  radiant intensity integrated 

over a complete wavelength spec t rum including the f a r  UV. 

cavity gage, used previously in radiation measu remen t s  through optical 

windows was combined with a windowless, fast-acting shut ter  concept 

result ing in a sys tem capable to m e a s u r e  radiant energy down to the wave- 

lengths corresponding to the photo-ionization edge of krypton (see  F i g .  1. 2)  

used a s  a buffer gas  in the space inside the model  between the cavity gage 

and the t e s t  gas.  

A total  radiation 



1. 3 Scope of Investigation 

The unique feature of this work is the development and use of the f a s t  

response total  radiation cavity gage sys tem which permi t ted  u s  to m e a s u r e  

radiant  intensity f rom a model  shock layer  through a non-absorbing optical 

path (except for the very  sho r t  wavelength cut-off of the buffer gas) .  

the init ial  phases  of the present  study seve ra l  p roblems developed in the 

During 

readout of the gage signal which were  t r aced  to the seve re  conditions of the 

flow around the model.  

the model  during the t e s t  had tendency to couple with the gage c i rcu i t  causing 

distortioii of the signal. 

It was found that the par t ia l ly  ionized gas surrounding 

This was fur ther  complicated by pho toemiss ion  of 

e lectrons within the gage which also affected the output signal. Considerable 

e f for t  was therefore  devoted to eliminate these effects which w e r e  success -  

fully resolved in the course  of the p re sen t  investigation. 

data were  obtained a t  initial shock tube p r e s s u r e  P1 = 0.33 t o r r  and shock 

velocity range corresponding to flight velocities between 32 ,  000 f t /  s e c  and 

4 5 , 0 0 0  f t / s e c  a t  re la t ive density of the t e s t  gas 

Total  intensity 

P / P = 6 x 1 0 - l .  The 

investigation includes measu remen t s  in  the windowless configuration a s  

well a s  with models  equipped with quartz  and lithium fluoride windows. 

The la t te r  t e s t s  w e r e  intended to differentiate between the contribution 

f rom various regions of the wavelength spectrum. P r o p e r  interpretat ion 

of the experimental  data requi red  a considerable amount of analytical  

effort ,  main ly  in the prediction of the total  radiation a s  a function of 

density and tempera ture  in  the range of the experimental  conditions. 



These resu l t s  were  also used in deriving the implication of strong gas e m i s -  

sion during Ea r th  re -en t ry .  In addition the effect of a la rge  radiant energy  

flux emitted by the gas  behind the bow shock on the proper t ies  of the gas in 

the shock layer  has  been analytically investigated,  both for the shock tube 

and for a corresponding flight environment. 

- 6 -  



2. ANALYSIS 

Because of the e a r l y  i n t e r e s t  in  orb i ta l  and sub-orbi ta l  re -en t ry ,  

considerable attention has  been given in the p a s t  to the prediction of the 

radiance of air and s i m i l a r  gases  a t  re la t ively long wavelengths - grea te r  

than about 1600 A - and seve ra l  experimental  s tudies  have been made to  

evaluate these r e su l t s .  

lzvels  of i n t e re s t  i n  superorbi ta l  en t ry ,  however,  radiation a t  s h o r t e r  

wavelengths tends to become a significant p a r t  of the total  energy emit ted 

by the gas.  

a toms ancl charged pa r t i c l e s  which exhibit l a rge  absorption c r o s s  section 

for  t ransi t ions from ground s ta tes .  In addition the peak of the blackbody s p e c t r a l  

distribution shif ts  towards shor te r  wavelengths allowing l a r g e r  amounts 

of radiant energy emit ted in this wavelength region to  leave the volume 

of the radiating gas p lasma.  This was  indicated in the theoret ical  r e su l t s  

of Breene and h is  assoc ia tes  (1);  the implications of Breene ' s  predictions 

in  t e r m s  of radiative heat  t r a n s f e r  a t  superorb i ta l  flight conditions were  

discussed by the p re sen t  authors in Ref. 1 2 .  

0 

0 
At the t empera tu res  above 8000 K and density 

This is  par t ia l ly  due to the increased  number density of 

In Breene ' s  analysis ,  the ma jo r  contributor to  air radiance at  

0 
X 

anism.  

been improved upon in the recent  works of Sherman and Kulander ( 5 )  and 

Hahne (7 ) .  

1600 A is  the electron-atomic ion recombination ( f ree  -bound) mech-  

Breene '  s simplified analytical  model  for  th i s  mechanism has  

-7  - 



Biberman and h i s  assoc ia tes  have a l so  conducted detailed studies 

of radiative heat t ransfer  f rom air including mechanisms in  the vacuum 

UV.  A recent  s u m m a r y  of the i r  work is given in  Ref. 3. Unfortunately, 

these r e su l t s  are presented  quantitatively only in  t e r m s  of integrated 

radiative f l u x  so  that the contributions of the different mechanisms to the 

total  g a s  radiance can only be approximately deduced. Pe rhaps  the mos t  

significant r e su l t  of this  work is  the indication that a tomic line radiation - 

most ly  in the vacuum U V  - will  account for m o r e  than 50% of the total  gas 

radiance over wide ranges  of flow propert ies  and radiating gas  thickness of 

i n t e r e s t  in the r e -en t ry  flight. 

tive contribution of l ines  as indicated by Vorobev et  al  (4) for a nitrogen 

This i s  shown in Fig.  2. 1 where the r e l a -  

p lasma is shown. 

2. 1 Radiative Trans fe r  

In considering the emission of electromagnetic energy  from high 

tempera ture  gases  one mus t  recognize that in mos t  c a s e s  of i n t e re s t  

including the present  measurements  the gas  r ep resen t s  an extended source 

which has  proper t ies  both of emiss ion  and absorption, 

radiant energy emit ted by one portion of the gas m a y  be absorbed by 

another and shall  never  leave the control volume. When all emitted 

photons escape from the p l a sma  we ca l l  it optically thin. 

forinulations of the radiative t ransfer  under such conditions can  be great ly  

simplified. 

functions of frequency we find that in  many cases  the radiating gas  may 

That means  that 

Mathematical  

Since the radiative proper t ies  of mos t  p l a smas  a r e  s t rong 

- a -  



be optically thin in  cer ta in  spec t r a l  regions while s t rongly self-absorbed in 

o the r s .  

of the emiss ion  and absorption when interpret ing the observed  intensity.  

On the assumption of L T E  the effective absorption and emiss ion  coefficients 

a t  a given p r e s s u r e  and t empera tu re  can be re la ted  by recal l ing Kirchoff ' s  

law 

It i s  therefore  n e c e s s a r y  to account for  the spec t r a l  dependence 

- 
= x  B 

V v v  

where 

is the Flanck '  s function and the effective absorption coefficient,  

includes the cor rec t ion  for  s t imulated emiss ion .  We can  therefore  take the 

- 
effective absorption coefficient,  H. , a s  the p r i m a r y  p rope r ty  defining 

the radiative cha rac t e r  of the p lasma.  

The quantity which i s  observed  a t  a boundary point of the p l a sma  is  
- 

the intensi ty  I ( r , 9 , v ) giving the power p e r  unit a r e a ,  p e r  unit solid 

angle ,  in  the direction specified by the angle 8 and i n  the frequency in t e r -  

val  to v t dv . By integrating the intensi ty  with r e spec t  to the 

given var iables  we obtain total  radiant energy  flux, qR, passing a c r o s s  a 

unit a r e a  of the enclosing su r face .  This quantity i s  requi red  f o r  the 

evaluation of radiative heating in  the case  of an  en t ry  vehicle.  In the following 

- 9 -  



sect ion we der ive bas ic  re la t ions governing radiat ive t r ans fe r  re la ted  

par t icu lar ly  to the geometry of the p re sen t  exper iment  and show the 

method applied in  the interpretat ion of the experimental  r e s u l t s .  

For simplicity we can a s sume  an  i so the rma l  and i so t ropic  medium 

(this assumption is consis tent  with our exper imenta l  conditions).  

calculate  the emit ted radiat ion we can consider  an  e l emen ta ry  volume 

dV within the gas  which e m i t s  energy  uniformly in all direct ions p e r  unit 

t ime 

To 

- 
H e r e  n and hence E m a y  depend on the coordinates  of the 

given point, 

V U 

We a r e  a l s o  assuming that the radiating gas  is enclosed by 

perfect ly  t r anspa ren t  wal ls .  Hence they do not re f lec t  any radiat ion back 

into the gas.  The fract ion of the energy  emit ted by dV which would emerge  

through a unit a r e a  of the su r face ,  S, enclosing the gas  in the absence of 

- self absorption i s  - -  
n ( r l  - r )  

471 I r ,  - r l  
- 3  - 

- - _  - -  
In this express ion  n ' ( r , - r ) /  Ir - r  I i s  the projected unit a r e a  1 

onto a plane no rma l  to the r a y  emanating f rom the e l emen ta ry  volume, 

n is a unit vector no rma l  to the sur face ,  r i s  the posit ion vector  of 
- - 

- 
the e l emen ta ry  volume dV and r is  the posit ion vector  of the sur face  

1 '  

e l ement  dS. 
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dS 

SKETCH A 

In t ravers ing  the gas  some of the energy  is  absorbed before i t  r eaches  

the boundary S of the g a s .  The fract ion of the t ransmit ted energy  through 
- -  - - 

the distance I rl-F( is exp ( -  xy 1 r l  - rl ). Thus the 

rxonochromatic energy emitted by the e lementary  volume dV and actually 

passing through dS is according to Lamber t -Beer  law 

f rom which total  energy emit ted a c r o s s  unit area of the envelope i s  

-11- 



It can be seen that besides depending on the radiative p rope r t i e s ,  the 

radiant  energy is also strongly dependent on the geometry  of the 

radiating gas .  

inversion p rocedures  and to a s s u r e  the grea tes t  accu racy  of the experi-  

mental  resu l t s  it is essent ia l  to r e s t r i c t  the p l a sma  to the s imples t  

possible geometr ical  configuration. 

It is c lear  that in o rde r  to avoid complicated integral  

In the present  study the use of the shock layer  formed ahead of a 

blunt model in the flow behind an  incident shock wave pe rmi t s  an approxi- 

mat ion of the radiating gas by a semi-infinite para l le l  l ayer  a s  shown below. 

Y 
c 

t 

1 1  

/ 
/ y' / 

I 

I 

L 

d s  
N l 0 3 - 6 6 1  

SKETCH B 

The radiative energy passing through a unit a r e a  a t  the origin from 

al l  directions is  obtained f rom 2 . 5  by taking r l  = 0 and substituting 
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f o r  the e lementary  volume 

2 
d V  = 277 r s i n e  de d r  

together with 

n r 
= c o s e  

I r l  

To obtain the requi red  quantity the integration m u s t  be c a r r i e d  out over  

the l imits  fo r  r between 0 and and f o r  8 between 0 and 77 / Z .  

The integral  can be divided into two p a r t s  

( 2 . 7 )  

where 

0 0  0 

and 

which become upon integration 

m 

0 

and 

(2.10)  

( 2 . 1 1 )  

with u = r / L .  
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r ep resen t s  the contribution f rom the gas within (1) We recognize that q,  

the hemispher ica l  volume with a rad ius  L. The second in tegra l ,  q, (2) , 

gives thus the radiant  energy  emit ted by the remaining p a r t  of the s e m i -  

infinite layer .  

c a s e  of an optically thin layer  typified by X L <<  1 both integrands 

It is interest ing to examine the l imiting c a s e s .  In the 
- 

V 

m 

0 

resul t ing i n  

(2.12) 

- 
When the optical  thickness x L > 1 we have s t rong  self ab-  

sorpt ion.  The integrand in  q, 

U 
( 2 )  tends to ze ro  and the energy  passing 

through the unit a r e a  reduces  i tself  to black-body radiation 

m 

0 

In any intermediate  c a s e  

(2. 13) 

(2 .14)  

The equation governing the radiat ive t r ans fe r  in  the direct ion no rma l  to 

the planes bounding the radiating g a s  (Sketch B)  is obtained f rom (2 .5)  

by taking 8 = 0. I t  r e su l t s  in  the express ion  for  intensity 

m L 

exp (-x r) d r  du 
v (2 .15)  

0 0 
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Integrating with r e spec t  to y r e su l t s  i n  

m 

(2 .  16) 

0 

By comparing this expression with eq. ( 2 .  10)  we s e e  that the intensity in 

the direction no rma l  to the base  is equal to q, 

of the experimental  configuration (coll imated field of view), it is this 

(1)  
/ n  By the nature  

expression which is used in the interpretat ion of measu red  data. 

2. 2 Total Radiation of Air 

The work of Biberman (3 )  appears  to r ep resen t  one of the m o r e  

complete t r ea t i s e  in  which all present ly  known molecular  and atomic 

p rocesses  were  included with a considerable attention given to the i r  

spec t ra l  dependence, 

such a s  grey  g a s  o r  optically thin layer  were  introduced in the formu-  

lation of the radiative t r ans fe r .  

Hence no approximations frequently employed 

The r e su l t s  therefore  display the 

typical self absorption charac te r i s t ics  a t  high relative densit ies and 

la rge  g a s  layer  thicknesses .  I t  is  instruct ive therefore  to analyze 

fur ther  these r e su l t s  in order  to make them m o r e  suitable for  genera l  

application 

The computations of Biberman have been presented in the form of 

emissivi ty  of a semi-infinite pa ra l l e l  and homogenous gas  layers  defined 

by the expression 

(2 .  1 7 )  

u T4 
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In arr iving a t  the absorption coefficients of the e lementary  p rocesses  

assumption was made  of local thermodynamic equilibrium. 

- 
In attempting to cor re la te  the given values of 

pL ,  where p is the p l a sma  p r e s s u r e  and L i s  the geometr ical  thickness 

of the gas l aye r ,  we found that in a cer ta in  range of p r e s s u r e s  and temp- 

e ra tu re s  the calculations displayed an anomalous behavior. 

seen in  F igs .  2. 2 and 2. 3 which shows 

respectively.  

e a s  a function of 

This can  be 

a t  T = 12000°K and 14000°K 
- 

The tabulated values indicate that 

- - 
€ = E  

p = 10 atrri, L = 1 cm p = 1 a t m ,  L = 10 cm 

which occurs  neither a t  lower nor higher p r e s s u r e s .  

no obvious physical reason.  

with the help of a fur ther  c ross -p lo t  to obtain the level indicated by the 

dashed line. 

2 .5  were  found to be normal .  

Such behavior has  

We have therefore  interpolated the data 

Data for T = 17000°K and 20000°K shown in F i g s .  2.4 and 

The general  feature  shown in this correlat ion is that the p r e s s u r e  

and gas  layer  thickness a r e  not equivalent over m o s t  of the p r e s s u r e  range 

except a t  very  high p r e s s u r e s  where strong self-absorption mitigates the 

spec t ra l  charac te r i s t ics  of the various radiating sys t ems  contributing to 

the total  spectrum. The effect of p r e s s u r e  change a t  a constant t empera -  

tu re  is of course not only associated with changes of total par t ic le  density 

but a lso with changes of the chemica l  composition of the gas .  
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Since resu l t s  of Biberman give q r  the quantity m e a s u r e d  in the 

p re sen t  study can be infer red  by recall ing that 

as derived in the preceding section. 

T.ghich the intensity,  I ,  w i l l  l ie.  

This es tabl ishes  a range within 

Allen (1 1 )  a l so  pe r fo rmed  theoretical  calculations of the intensity 

no rma l  to a semi-infinite s lab using the technique which was employed 

in Kef. 6. These calculations include essent ia l ly  the s a m e  radiating 

sys t ems  which w e r e  included in the prediction of Biberman although 

the t reatment  of individual sys t ems  m a y  possibly be different.  The 

resu l t s  of Refs. 3 and 11 will be used for compar ison  with the present  

experimental  data,  

Several  other theoretical  predictions of high tempera ture  a i r  

radiation a r e  present ly  available but no attempt is made h e r e  to discuss  

the advantages of one s e t  of calculations over the other.  

2. 3 Coupling; Between Radiative Trans fe r  and Flow 

An important charac te r i s t ic  of the vacuum UV radiating mechanisms 

is their  high absorption coefficient level  which causes  the predicted vacuum 

U V  radiation to be strongly self-absorbed in a shock layer  a t  flight con- 

ditions of in te res t  while the s a m e  layer  w i l l  be essent ia l ly  t ransparent  

to radiation a t  longer wavelengths. This i s  i l lustrated in Fig.  2 .  6 for 

continuum radiation a t  T = 14000 K and p = 1 a t m ,  using absorption 
0 



coefficients f rom Ref 3 .  Similarly the relat ive contribution by ultraviolet 

l ines  i s  strongly influenced by self-absorption. Thus , a t  a given velocity 

and altitude a thin layer  may  be dominated by the vacuum U V  contribution 

and a thick layer  by the long wavelength radiation. 

of self-absorption on radiative heat t ransfer  a r e  shown in F i g s .  2 .7  and 

2. 8. In Fig. 2. 7 we have presented  the total  equilibrium radiative heating 

predictions of Ref, 3 for a range of R 

velocit ies and altitudes. 

determine the shock detachment distance and no cor rec t ion  was made  

to account for the curvature  of the shock layer .  The theoret ical  data 

have been normal ized  by R 

good correlat ion p a r a m e t e r  for an important f l ight regime.  

layer  t ransparent  to a l l  wavelengths , the correlat ion p a r a m e t e r  would 

be simply R N o  Thus,  the overal l  effect on total  radiative heating of 

self -absorption i s  reasonably well approximated by assuming that 

the radiation i s  proportioned to RNo' 

assumptions of the theoret ical  resu l t s ,  of course) .  

does not justify assumptions of the type that ass ign a wavelength averaged 

proper ty  to the gas  (such a s  absorption coefficient o r  emissivi ty)  and 

uses  this property fo r  fu r the r  analysis;  that i s ,  the fact  that the ab-  

sorption coefficient is a strong function of wavelength must ,  in general ,  

be factored into any detailed analysis of radiative t ransfer  through, o r  

out of, a heated gas  region. 

The predicted effects 

values and over a range of flight 
N 

The predictions of Serbin ( 1 3 )  w e r e  used to 

O 0  and i t  i s  seen  that this is a reasonably N 

For a shock 

(for this flight reg ime and the 

Note that this resu l t  
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Figure 2 . 8  allows u s  to compare  the predictions of different authors 

and a s s e s s  the importance of absorption on radiative heat  t r ans fe r  fo r  a 

hypothetical flight situation. 

the Breene absorption coefficients for the ent i re  wavelength range of 

in te res t .  The effect of absorption was included in the second; i t  reduces 

the vacuum UV heating appreciably but has  a negligible effect  on the long 

wavelength contribution. The Biberman predict ions,  taken f rom Fig .  2. 7 ,  

include the self-absorption effect. 

Breene -Sherman-Kulander value which does not include line contributions; 

therefore ,  considering the importance of line radiation in  the Biberman 

r e s u l t s ,  we can conclude that,  a t  l ea s t  for this flight si tuation, there  is 

an approximate agreement  between the Biberman,  e t  a1 and the Breene-  

Sherman-Kulander predictions for those mechanisms considered in the 

la t te r  analysis.  

The upper two values w e r e  calculated f rom 

It is  somewhat m o r e  than twice the 

In addition to self-absorption, we mus t  consider the fact  that the 

energy  radiated f rom the shock layer  wi l l  reduce the total  energy  level 

of the layer  and thus cause the radiated energy to be lower than that 

calculated on an isoenerget ic  shock layer  assumption. 

r e f e r r e d  to a s  the coupling of radiation and convection (14). 

analytical  studies of this effect  have been presented  by Goulard (14),  

Howe and Viegas (1 5 ) ,  Hoshizaki and Wilson (1 6 ) ,  Wilson and Hoshizaki 

(17) and the resu l t s  of Re f s .  15 and 17 have been compared  in Ref. 16. 

These  theories  a s sumed  that the gas was ei ther  t ransparent  (14) (16) (17) 

This  can be 

Results of 
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o r  a grey  body (15) (they did not t r e a t  the self-absorption charac te r i s t ics  

a s  a function of wavelength), so that their  resu l t s  m u s t  be considered to 

be only an approximation of the magnitude of coupling effects.  Recently 

Hoshizaki and Wilson (18) published a theoret ical  approach to the radiating 

shock layer  problem including the effects of coupling with wavelength 

dependent absorption and including the effects of viscosity.  

The rat io  of the uncoupled energy  radiated from a heated gas region 

to the flow energy f lux  through that region is often used to indicate con- 

ditions at  which important coupling effects can be expected. F o r  a thin 

shock l aye r ,  this ra t io  can be defined a s  

U 
2 q r  

pa3 uf 
3 r =  

2 

We have indicated l ines of constant I' on Fig. 2. 7 for two spherical  

body nose radii .  

the value of I' 

value. Since this r value represents  a la rge  decrease  ( 2 5 %  or  m o r e )  

in radiative heating according to the theories  mentioned above, we can 

be concerned that coupling effects might be significant in important  flight 

situations. 

It is seen that for  bodies in the interest ing R range,  N 

can be of the o rde r  of 0 . 1  a t  velocit ies below the escape 

Intuitively, it s e e m s  reasonable to expect that the reduction in  

radiative heat t ransfer  due to coupling for a blunt body flow will p r i m a r -  

i lybe  a function of I' , at  leas t  for the i so thermal  gas assumption. To 
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check this we have conducted a simple analysis for  shock layer  thickness 

range of 1 to 1 0  c m .  F i r s t ,  the Biberman qr values were  calculated 

f o r  a given flight condition; second, the radiated energy  loss  was  assigned 

uniformly a c r o s s  the shock layer  ( t ransparency assumption) result ing in 

a lower average stagnation region enthalpy; third,  a q 

new effective stagnation conditions was calculated; and fourth,  the p r o -  

cedure was i terated until the convergence of qr 

this approximate procedure ,  i t  is indeed found that the percentage radiative 

heating r,:duction apparently is only a function of r ; the r e su l t  i s  given 

in Fig.  2 .9 .  Also shown in the figure a r e  seve ra l  resu l t s  f r o m  Refs. 15 

and 16 ( a s  given in the la t te r ) .  

and the present  analysis fortif ies the conclusion that r 
variable  and suggests that the assumptions used in the three  calculation 

p rocedures  a r e  equivalent. However,  Ref. 14 predicts  considerably m o r e  

reduction in radiative heating a s  a function of r 
(e.  g. Finally,  we again emphas ize  that these 

conclusions a r e  not necessar i ly  valid for a gas that has  a s t rong wavelength 

dependence of self-absorption. 

Ref. 18 do not allow us to calculate q r c /q ru  and compare  them with other 

r e su l t s  in Fig. 2. 9. 

U 

value for  the 

was achieved. Following 
C 

The good agreement  between these resu l t s  

is the important 

than shown in Fig.  2. 9 

ql-,/qru = 0 .5  a t  T = 0.05) .  

I t  i s  unfortunate that data published in 

An interest ing proper ty  of the coupling p a r a m e t e r  can be seen through 

analysis  of a hypothetical en t ry  vehicle t ra jectory.  

velocity-altitude t ra jec tory  (simple bal l is t ic)  of a RN = 1 f t .  body that 

F i g .  2.  10 shows the 
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en te r s  the a tmosphere  a t  4 0 , 0 0 0  f t / s ec .  W e  have also shown the uncoupled 

heating predictions of Biberman and the coupling p a r a m e t e r  based on these 

predictions.  From the shape of these cu rves ,  it can been seen that the 

peak coupling p a r a m e t e r  point precedes  the peak uncoupled radiative 

heating point by seve ra l  seconds.  This i s  seen in Fig. 2 .11  where  I' 

and qrU a r e  plotted a s  functions of t ime. If we now make the assumption, 

discussed above, that  the percentage reduction in radiative heating a t  any 

point on the t ra jec tory  i s  only a function of I' , we conclude that the 

coupling effect will  not only reduce the radiative heating but a lso shift 

the maximum heating point (and the centroid of the heating pulse a r e a )  

somewhat to la te r  t imes  than indicated by an uncoupled prediction. 

proper ty  i s  i l lustrated in  F ig .  2. 11 through plots of the coupled heating, 

This 

, a s  de te rmined  f rom Fig. 2. 9 and Ref. 14 again assuming that 
q r C  

q rc /qrU i s  only a function of r 
the Biberman prediction, based on Ref. 14 was also shown in F ig .  2 .  8. 

The approximate coupling correct ion to 

F r o m  this brief discussion we conclude that radiative contributions 

in  the vacuum U V  region of the spec t r a  (nominally defined h e r e  a s  500 

to 1600 A ) ,  self-absorption of the shock layer  gas ,  and coupling between 
0 

the radiated energy  and flow energy a r e  of potential importance in the 

study of radiative heating to en t ry  vehicles in superorbi ta l  flight regime.  

In a s ense ,  the existence of strong vacuum UV radiation promotes  the 

importance of self-absorption and coupling, since it is radiation at these 

wavelengths that has  la rge  absorption coefficients, and since the coupling 
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p a r a m e t e r  a t  a given velocity-altitude point is proportional to the total  

energy  radiated away. 
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3. EXPERIMENTAL FACILITY AND INSTRUMENTATION 

3. 1 Faci l i ty  Descr ipt ion 

In the study of radiative proper t ies  of high t empera tu re  gases  one 

is confronted with the problem of producing wel l  defined samples  of the 

gas  a t  appropriate  terr ,perature and p r e s s u r e  leve ls  f o r  t ime durations 

compatible with the response  cha rac t e r i s t i c s  of the radiat ion senso r s .  

In the case  of model  measu remen t s ,  this m u s t  be long enough to allow 

the formation of s teady flow around the model.  The simulation of con- 

ditions corresponding to hypervelocity en t ry  has  become possible  with 

the development of the e lec t r ica l ly  driven shock tube (19) (20) .  The 

facil i ty used in  this study i s  shown in  F i g .  3. 1. It is essent ia l ly  a con-  

ventional shock tube in  which the d r ive r  r ema ins  isolated f rom the t e s t  

gas  p re sen t  in the low p r e s s u r e  driven section by means  of a menta l  

diaphragm until the heating p rocess  of the light gas in  the d r ive r  - an  

e lec t r ica l  d i scha rge  of capaci tor  s to red  energy - is completed.  The 

design fea tures  and mode of operation have been d iscussed  a t  length in  

Refs. 1 2  and 2 2 .  The d r ive r  tube in  which the t e s t  sect ion is located has  

a 6-in. io  d. and i s  31 .5  ft. long. Two capaci tor  banks,  one ra ted  a t  

3 0 4 , 0 0 0  joules  and the other  a t  764,  000  joules a r e  available to supply 

the energy. The d r ive r  dimensions may be va r i ed  in  s i ze  up to a 3 in. 

in diameter  and 4 - 1 / 2  f t .  i n  length by appropr ia te  l i ne r  i n s e r t s .  Fig.  3. 2 

is a photograph of the t e s t  section portion of the dr iven tube and shows some 

of the instrumentat ion used with the facility. 
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F i g -  3. 3 i l l u s t r a t e s  the instrumentat ion techniques used to de te rmine  

the shock tube per formance;  a l so  indicated a r e  the techniques used to 

m e a s u r e  total  gas radiance both behind the incident shock wave and in  

the stagnation region of a blunt model  i m m e r s e d  in  the flow produced by 

the passage  of the incident shock wave. 

using the flow ahead of blunt models  only. 

The p r e s e n t  measu remen t s  were  made  

To determine the t e s t  flow p rope r t i e s  and to a s s u r e  validity of the 

data during each run ,  s e v e r a l  measu remen t s  a r e  made.  Signals f r o m  a 

s e r i e s  of :?hotomultipliers located a t  var ious s ta t ions along the shock tube 

a r e  used to m e a s u r e  the incident shock wave velocity as a function of 

distance f rom the diaphragm. 

the p rope r t i e s  of the gas in  any par t icu lar  flow region a r e  determined 

F r o m  this and the ini t ia l  shock tube p r e s s u r e ,  

using thermochemica l  equilibrium shock tube calculations The techniques 

used fo r  a s ses s ing  the quality of the t e s t  flow a r e  dependent on observat ions 

(from the sidewall of the shock tube) of the radiant  emiss ion  from the gas  

behind the incident shock wave and f rom the flow in  the stagnation region 

of the model.  

t empora l  quality of the flow, in t e r m s  of i t s  thermodynamic p r o p e r t i e s ]  

Since the emiss ion  i s  a s t rong function of t empera tu re ,  the 

and i t s  duration can  be deduced f r o m  the s teadiness  of the emit ted radiat ion,  

and i t s  spat ia l  quality, from the image conver te r  photographs.  Ins t ru-  

mentation detai ls  and tube per formance  data a r e  fur ther  d i scussed  in  

Refs.  12,  1 9 ,  21 22  and 23. 

In view of the discussions in  the l a s t  sect ion,  i t  is interest ing to 



consider  shock tube per formance  in  t e r m s  of flight condition simulation. 

This has  been done in  Fig.  3.4. 

ini t ia l  tube p r e s s u r e  data taken with different s i ze  d r i v e r  tubes ( represented  

Shown a r e  s e t s  of incident shock velocity- 

by the nominal dr iver  energy  density values).  Scales showing flight velocity 

and approximate altitude simulation achieved in  the blunt model  stagnation 

region a r e  given on the figure.  

The use of a l a r g e r  capacitor bank (768 k j )  allowed us to extend our 

operational range of the facility to flight velocity simulation of approximately 

60, 000 f t / s e c .  The capabili t ies of this a r rangement  a r e  shown i n  Fig. 3. 5 

where dr iver  energy density is presented as  a function of shock velocity. 

Shown on the figure are experimental  points obtained with ei ther  energy 

bank and s e v e r a l  shock tube init ial  p r e s s u r e ,  p1. The high velocity 

points follow the genera l  t rend  established at lower shock velocities for  

the given init ial  p r e s s u r e .  On the right hand side of the figure we have 

shown the operating range of our facil i ty.  The "A" energy  bank has  avail-  

able 304 kj  a t  40 kv ,  while the "B" energy bank can supply 768 kj at the 

same  voltage. 

reducing the voltage to which the capacitor bank is charged o r  by modifying 

The energy density in  the dr iver  can be adjusted ei ther  by 

dr iver  length. It can  be seen  from Fig. 3. 5 that with a length of the dr iver  

equal to 12 inches the "B" bank is  capable of producing shock velocities 

i n  excess  of 44, 000 f t / s e c  at a sufficiently high ini t ia l  p r e s s u r e  necessa ry  

to guarantee a positive duration of the t e s t  flow. 

In Section 2. 3 we discussed the occurrance of coupling between the 
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flow field and radiative energy t ransfer  result ing in a non-adiabatic flow 

of the gas  in  the region of the stagnation point. 

p a r a m e t e r  

It was shown that a 

, defined a s  the rat io  of the radiative flux a r r ived  a t  by 

the adiabatic consideration of the shock layer  to the energy  convected 

a c r o s s  the bow shock wave, gives useful indication of the magnitude of 

the coupling. In F ig .  3. 6 we show the range of which can be r e -  

produced in the shock tube experiment  using a 2-in. diameter  blunt model.  

To facilitate interpretat ion of the experimental  data we a r e  showing 

in  F i g s .  3 ,  7 ,  3 . 8  and 3. 9 ,  the stagnation p r e s s u r e ,  t empera tu re  and 

enthalpy taken f r o m  Ref.  24 and corresponding to the model  configuration 

in a shock tube a s  functions of the incident shock velocity and the initial 

driven tube p r e s s u r e .  

given i n  Fig. ? J ~  9. 

Conversion to flight velocity simulation i s  a lso 

Multiplication of the shock velocity by a factor  of 

1. 37 gives the flight velocity corresponding to the same  stagnation 

enthalpy 

3. 2 Total Radiation Cavity Gage 

The measu remen t  of total  radiative heat f lux  f rom a high t e m p e r a -  

tu re  gas volume a c r o s s  the surface enclosing i t  has  always been a 

difficult problem. I t s  difficulty is fur ther  increased  when the l ifetime 

of the uniform radiation source is of the o rde r  of microseconds .  Photo-  

emiss ive  devices such a s  photomultipliers and phototubes charac te r ized  

by an ex t remely  f a s t  response a r e  sensit ive only to radiation over 

relatively nar row wavelength ranges.  A suitable sensor  in this respec t  
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i s  a thin film res i s tance  the rmomete r  s imi la r  to the ones widely used for 

convective heat t ransfer  in shock tubes and shock tunnels (25). Since 

such a gage depends on absorption of the radiant energy,  a very  ser ious 

drawback i s  the unknown reflectivity of i ts  surface which i s  a function of 

the surface finish conditions, the wavelength of the incident radiation and 

the incident angle. Coating of the thin film t h e r m o m e t e r ,  in m o s t  cases  

consisting of sput tered platinum, by low reflectivity ma te r i a l s  such a s  

carbon o r  gold, requi res  experimental  verification of the degree of ab-  

sorption a t  various wavelengths and incidence angles. I t  can also slow 

down the response of the gage beyond i t s  usefulness for  the shock tube 

application. F o r  this reason  we have selected a gage of the shape shown 

in Fig.  3. 10 s o  that a lmost  a l l  radiant energy which en te r s  the cavity 

can be absorbed by undergoing multiple reflections. Figure 3.11’ shows 

the photograph of a complete gage. Details of analytical considerations 

leading to the given geometry and the mode of operation of the cavity 

gage have been given in Ref. 26. 

quar tz  substrate  i n  a conventional way to approximately 1000-1200 A 

The platinum film is sput tered on the 
0 

thickness. 

270 in the wavelength range between 0 . 4  and 0 . 6  1 

lengths i t  becomes sma l l e r .  

gage response due to the platinum film thickness using the approach given 

in  Ref. 27. 

in our case the gage response i s  within 870 of the t rue  value a t  5 p  s for 

T ransmiss ion  of such a film was measu red  to be l e s s  than 

At sho r t e r  wave- 

Calculations were  made a l so  of the delay in 

The resu l t s  a r e  shown in F i g .  3.  1 2  f rom which we find that 



a constant heating rate .  

The thin film res i s tance  t h e r m o m e t e r ,  the sensor  of the cavity gage, 

i s  operated a t  essent ia l ly  a constant cu r ren t  in a c i rcu i t  shown in F ig ,  3. 13 .  

Each lead i s  connected through a la rge  r e s i s to r  to a dry ce l l  bat tery pack 

while the signal i s  fed into a differential  amplifier to re jec t  any common 

mode noise pick-up. 

As we show in Ref. 26 the heat f lux  to the film can be deduced from 

the tempera ture  his tory of i t s  surface and i s  given by 

+ 

The tempera ture  change of the platinum film during the experiment ,  T ( t ) ,  

i s  obtained by measur ing  the res i s tance  of the f i lm,  R ( t ) ,  a s  a function of 

t ime. To convert  i t  to tempera ture  we requi re  the value of the thermal  

coefficient of res is t ivi ty ,  a This i s  de te rmined  by s ta t ic  calibration 

in a controlled environment over a range of tempera tures  encountered 

during the radiation measu remen t s .  

Thus the temperature  change, T ( t )  i s  

o r  



A computer code has  been wri t ten which pe r fo rms  the n e c e s s a r y  integration 

in  Eq. (3 .  1 )  f o r  a given input of gage voltage h is tory  and par t icu lar  cha r -  

ac t e r i s t i c s  of the given gage such as Q and R o .  

t r a c e  of the cavity gage signal is shown in Fig.  3. 14. 

parabolic shape is associated with a constant heat t ransfer  rate to a thin 

film thermometer  gage. 

A typical oscil loscope 

The charac te r i s t ic  

In Ref. 26 we have a l so  derived the pertinent formula relating the 

observed output signal of the gage and the radiative energy flux incident 

on the entrance opening. 

This  is  given by 

( 3 .  3 )  

where  A 

The corresponding h is tory  of the radiative flux is determined by the 

reduction of gage output signal as  shown in Fig. 3 .15.  

3. 3 

is the effective area of the sensing element  (platinum thin film). 
g 

Cavity Gage System with Windows 

The total  radiation cavity gage h a s  been used in a shock tube in two 

experimental  configurations with solid windows separat ing the gage f rom 

the radiating gas sample.  

emit ted by the gas processed  by the incident shock wave (28) .  

i s  located behind a s e t  of collimating slits veiwing only a nar row layer  

of gas  no rma l  to the axis of the shock tube. Splitter plates  have been used 

to allow the variation of the optical depths and to  eliminate the uncertainty 

In one, measurements  a re  made of radiation 

The gage 
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of effects caused  by ei ther  absorption o r  emis s ion  in the boundary layer .  

In a l l  recent  investigations,  quartz windows w e r e  used to separa te  the 

radiating tes t  gas f rom the gage. 

and density which can be obtained with the available input energy  into the 

d r ive r ,  the gas radiance a t  t empera tures  above 1 2 ,  O O O O K  has  been measu red  

Because of the l imit  of the tempera ture  

uF,ing the stagnation point shock layer  gas  a s  the gas sample.  The a r r ange -  

ment  of the total  radiation cavity gage inside a cylindrical  f lat  face model  

is shown in Figure 3. 16. A c i r cu la r  window, 1 m m  thick, was mounted in  

front of a rectangular  s l i t ,  0. 1 in. by 0. 5 in.  , flush with the face of the 

model.  The gage itself is located away f rom the window with i t s  entrance 

s l i t  para l le l  to the window aper ture ,  viewing only the gas  in  the shock layer  

close to the axis of the model. 

in a hemispherical  model. 

A s imi l a r  a r r angemen t  of the gage i s  used 

During init ial  operation of the gage, evidence of photoemission f rom 

the platinum film was observed ( 2 2 ) .  During tes t s  in which the gage was 

evacuated to a p r e s s u r e  of approximately 3 microns ,  the photoelectric 

effect was s t rong enough to produce pa r t i a l  short-circuit ing of the gage. 

A few runs w e r e  made  with a glass  window under the same  flow conditions 

with no evidence of the photoelectric effect ,  indicating that photons with 

energy  corresponding to a wavelength s m a l l e r  than 3500 A a r e  required 
0 

to cause the photoemission. To eliminate this effect, the gage was filled 

with pure nitrogen a t  1 atm p r e s s u r e .  The presence  of the nitrogen gas 

reduced the mean  f r e e  path of the e lec t rons ,  causing a space charge to 
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develop close to the surface of the gage within a fraction of a microsecond 

f rom the a r r i v a l  of the incident shock. 

hibited any fur ther  e lectron emission.  

of i ts  large c ross -sec t ion  for collision with electrons.  

3 . 4  

This space charge apparently in- 

Nitrogen gas  was chosen because 

Development of Windowless Gage System 

As was s ta ted before the main  purpose of the present  investigations 

was the measu remen t  of total thermal  emission from a i r  a t  t empera tures  

above 12,000°K. 

la rge  p a r t  of the radiant  energy emit ted by the p l a sma  will be a t  wave- 

lengths within the vacuum UV region of the spectrum. 

Referr ing to F i g .  1. 2 we note that in such a case  a 

Mater ia ls  normal ly  used for windows in shock tubes,  including 

quar tz ,  have distinct shor t  wavelength t ransmiss ion  cut-offs. These cut-  

off values,  a s  shown in Fig. 1 . 2 ,  occur a t  wavelengths longer than much 

of the radiation of in te res t  in high tempera ture  gas radiance studies.  

Therefore  , a measu remen t  sys tem with a windowless capability is sug- 

gested. 

The use of N 2  i s  sa t i s fac tory  behind sapphire and quartz windows; 

however,  for studies of vacuum U V  radiation, N2 is not suitable because 

of i t s  photoabsorption charac te r i s t ics  ( see  F ig .  1 . 2 ) .  In this c a s e ,  the 

choice is l imited to r a r e  gases ,  with helium and argon displaying the 

mos t  desirable  optical p roper t ies .  (The cut-off for helium, not shown 

in Fig .  1 . 2  occurs  a t  about 190, 000 ern-')* 

gas to suppress  the photoelectric effect was evaluated using a model with 

The ability of the buffer 
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a LiF window. A s  a f i r s t  choice,  argon a t  2 a tm p r e s s u r e  w a s  used. A 

cavity gage signal obtained from this run  is  shown in Fig.  3. 17. 

p resence  of a photoelectric effect which causes  the signal to become 

negative for  the duration of the t e s t  flow is evident. 

t o  adequately reduce the electron emiss ion  can  be explained by re fer r ing  

to Fig. 3. 18 where  electron collision c ross -sec t ions  for  s eve ra l  gases  

a r e  plotted as  a function of e lectron velocity (29).  Although argon and 

krypton display c r o s s  -sections for  e lectrons g r e a t e r  than nitrogen at  

e lectron energ ies  above 4 ev ,  both a r e  prac t ica l ly  t ransparent  to e lectrons 

with energies  in the vicinity of 1 ev,  

Ramsauer-Townsend effect ,  is  typical of the heavier  r a r e  gases .  

mixture  with equal proportions of K r ,  having l a r g e  c ross -sec t ions  for 

energet ic  e l ec t rons ,  and He with a reasonable  effectiveness for  scat ter ing 

slow electrons,  was  t r i e d  next in  the model.  A typical t r a c e  of the cavity 

gage response with the L i F  window model is shown in  Fig.  

be seen that the s t rong photoelectric effect is absent  and the signal t r a c e  

is  typical of a thin film thermometer  response  to an  approximately s teady 

heating pulse. 

The 

The inability of argon 

This t ransparency ,  known as  the 

A gas  

3.19. I t  can 

A s  previously mentioned, a windowless gage -model sys tem is 

required f o r  sensing vacuum UV radiation. 

the model  is  necessa ry  to counteract the photoelectric effect ,  the problem 

arises of how to contain this gas  inside the model  p r i o r  to the a r r i v a l  of 

the incident shock wave and to  prevent  it f rom mixing appreciably with 

Since a gas  mixture  within 
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the t e s t  gas .  The r e su l t s  obtained e a r l i e r  indicated that the gas  density 

inside the model mus t  be considerably higher than the shock tube initial 

p r e s s u r e  f o r  an effective r e s t r i c t ion  of movement  of the photoelectrons.  

A windowless model as shown in Fig.  3 .  20 was  therefore  developed in  

which a s t re tched  la tex  membrane  sepa ra t e s  the model  gas  f rom the shock 

tube. 

the rectangular  en t rance  s l i t  and in  contact with the la tex membrane  a s  

shown in Fig. 3. 21. 

w i re  takes  p lace ,  but the rap id  heating weakens the la tex  to a point where  

i t  t e a r s  under i t s  own in te rna l  s t r e s s .  

entrance s l i t  of the model  takes  approximately 15 ~ 1 .  s. 

gage gas  p r e s s u r e ,  a delay of about 140 ~s between the c u r r e n t  pulse  and 

full opening of the s l i t  was observed.  This delay was found to be repea t -  

able within 10 @ s .  

s ta t ion,  the fu l l  opening p r o c e s s  can  be scheduled to  be completed approxi-  

mate ly  10 s p r i o r  to the a r r i v a l  of the incident shock wave a t  the model  

station. 

p r e s s u r e  i s  much lower than the stagnation p r e s s u r e  indicated that i t  

would be difficult to account p rope r ly  for the absorpt ion cha rac t e r i s t i c s  

of the inflowing g a s  (unsteady and non-equilibrium expansion p r o c e s s  in  

the optical  path).  If the in te rna l  p r e s s u r e  is  s e t  equal  to the stagnation 

p r e s s u r e  this  effect will  ideal ly  be eliminated; therefore ,  we have followed 

the l a t t e r  approach in  our windowless sys tem.  

A pulse of c u r r e n t  i s  p a s s e d  through a 0. 0 0 2  in. wi re  located along 

No combustion of the membrane  nor  melting of the 

The p r o c e s s  of uncovering the 

Depending on the 

By using a delayed t r igger  s ignal  f rom an upstream 

Consideration of the inflow p rocess  in  the c a s e  when the internal  
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At the instant when the la tex membrane  b reaks ,  the buffer gas i ssues  

through the entrance slit into the s ta t ionary gas in the shock tube. 

the breaking of the membrane  occurs  approximately 10 ps before the 

incident shock a r r i v e s  a t  the model,  only a s m a l l  amount of the buffer gas 

escapes  and i ts  penetration i s  l imited to a few cent imeters  ups t ream of 

the model.  This gas is swept downstream dur ing  the f i r s t  1-2 /A s af te r  

the incident shock a r r i v e s  a t  the model (which is usually l e s s  than the time 

needed to form the quasi-steady blunt body flow). 

being able to t ime the membrane  opening to within about 10 u s  of the shock 

a r r i v a l  i s  that the expansion wave inside the model  does not reach  the 

gage and cause a convective perturbation within the flow t e s t  t ime.  

suming that the interface between the t e s t  gas and the gage gas i s  station- 

a r y ,  the diffusion of the gases  a c r o s s  i t  was es t imated  to be negligible 

during the t ime corresponding to a typical t e s t  gas flow (20-30  u s ) .  

Since 

Additional advantage of 

A s -  

A s imi la r  model  with a 1-in.  nose rad ius ,  shown in F i g .  3. 2 2 ,  was 

a l so  built and used in the present  study for two reasons .  

intended to es tabl ish experimentally the dependence of the measu red  

intensity,  I,  on the gas layer  thickness (shock layer  thickness for the 

hemispherical  model  is approximately 1 / 3 that of the cylindrical  model) 

and secondly, a t  shock velocities above 3 3 , 0 0 0  f t / s e c  the formation of 

the blunt model flow for the cylinder consumes too much t e s t  time leaving 

marginal ly  l i t t le t ime fo r  the response of the gage to the uniform flow. 

F i r s t ly ,  i t  was 
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4. EXPERIMENTAL PROCEDURES 

In this section we shal l  descr ibe  the techniques employed in p rep -  

a ra t ion  of the experimental  conditions leading to the acquisit ion of data.  

This  includes the prepara t ion  of the t e s t  gas in  the shock tube a s  wel l  a s  

the s t eps  involved in sett ing up the model  and the radiat ion gage. 

4. 1 T e s t  Flow Determinat ion 

During the p re sen t  exper imenta l  study s t r ingent  precaut ions  were  

taken to ensu re  that the contamination of the t e s t  gas was a t  a minimum. 

A thorough cleaning of the tube with methyl alcohol and d ry ,  c lean r a g s  

preceded  2 - 3  h r s .  pumping per iod  p r i o r  to each  t e s t .  

normal ly  evacuated down to approximately 8~ 

to promote  outgassing of the wal ls .  

indicated normally a ra te  of 0 - 0 .  8~ 

with the tes t  gas  to the p r e s s u r e  level  requi red  for the exper iment .  

d ry  a i r  ( - 7 5 O F  dew point) produced by the Matheson Co. was used  in  the 

dr iven tube. 

of the shock tube wal ls  a through-flow sys tem was provided. 

a continuous scavenging of the tube a t  t e s t  p r e s s u r e  leve l  fo r  approximately 

30 minutes  p r i o r  to the actual  run.  

cold t r a p  of d r y  ice  and acetone a t  the diaphragm end of the tube while a 

mechanical  vacuum pump at the model end produced the through flow. 

the cold t r ap  tempera ture  of -78OC the mois ture  p r e s e n t  i n  the t e s t  gas  

was reduced down to 0 . 0 0 5 7 0 ~  

The tube was 

and kept a t  this p r e s s u r e  

A leak check taken a t  that  p r e s s u r e  

pe r  minute.  The tube was  then filled 

Bottled 

In o r d e r  to fu r the r  reduce the contaminants due to outgassing 

This  allowed 

The t e s t  gas  was  introduced through a 

With 
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The through-flow was shut off 2 - 3  min.  p r i o r  to the run  and the 

p r e s s u r e  adjusted to the requi red  level  and r ead  by means  of a McCleod 

gage located a t  the center  of the tube length. 

The thermodynamic s ta te  of the t e s t  flow is de te rmined  f r o m  the 

shock velocity and the ini t ia l  dr iven tube p r e s s u r e .  

obtained by observing the lun-iinous profile of the shock wave with coll imated 

photomultipliers a s  it p a s s e s  seven s ta t ions ahead of the t e s t  sect ion a t  

which the model  is located.  

s enso r  arc: differentiated and displayed on a r a s t e r  t r a c e .  

the shock front at  each  station can  be read  with an accu racy  of about to. 5 ~s 

which for  example,  a t  3 0 , 0 0 0  f t / s e c  gives shock speed with an accuracy  of 

be t te r  than 1%. 

a l so  used a s  a check of shock speed obtained f rom the passage  of the 

luminous shock front .  

display i s  shown in F i g .  4. 1. 

two methods was observed.  

an  indication, in  m o s t  c a s e s  appearing as attenuation, of a possible  

var ia t ion of flow p rope r t i e s .  

The shock speed i s  

The t ime-o f -a r r iva l  s ignals  f rom each  photo- 

The a r r i v a l  of 

- 

In addition ionization gages located a t  two s ta t ions were  

Typical shock speed data obtained f r o m  the r a s t e r  

Normally a good agreement  between these 

The change of shock velocity always gives 

The second impor tan t  a spec t  of the flow is the available t e s t  t ime 

a s  determined by the length of the shock p rocessed  gas  between the 

incident shock wave and the passage  of the interface region separa t ing  

the gas  init ially in the dr iven tube and the d r ive r  gas .  

the actual  t e s t  t ime is much s h o r t e r  than the predict ion calculated on the 

It w a s  founu that 
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b a s i s  of viscous flow but neglecting turbulent mixing caused  by the finite 

opening t ime of the diaphragm. 

t ime can  differ f rom run to run as  shown in  Figure 4. 2 although the t e s t  

conditions are  kept the same .  Measurenients  a re  normally taken during 

each  experimental  run to determine the actual t e s t  t ime.  

Ref. 30 that  such measurements  should be based on a t  l e a s t  two independent 

methods.  

Also,  i t  was found that the available t e s t  

It was  shown in 

In the present  study we used two techniques. 

In the first one the emit ted light f rom the shock heated g a s  behind 

the incident shock wave is observed ( 3 0 ) .  

is associated with a sudden appearance of s t rong radiation overshoot which 

decays to  an equilibrium level within a shor t  t i m e ,  as the gas  re laxes  

to the thermochemical  equilibrium, and its tempera ture  drops.  The uni- 

fo rm leve l  of the emit ted energy corresponding to the t e s t  gas  flow follows 

until the contact zone a r r i v e s  at  which instant the t e s t  t ime ends,  The 

emiss ion  f rom the gas  is  a ve ry  s t rong  function of i t s  t empera ture .  

Hence,  the s teadiness  of the test gas  emiss ion  is  a good indication of i t s  

quality. 

The a r r i v a l  of the shock front 

Using a two-channel photometer the quality and the length of the 

t e s t  time and the length of t ime necessa ry  to es tabl ish s teady flow around 

the model  is determined by monitoring the emission from the shock layer  

ahead of the stagnation point of the model.  

whenever model  experiments  a r e  pe r fo rmed  (30). 

loscope t r a c e s  of the signals f rom the r e d  channel photometer (0.  5 - 1. 

This method is  necessa ry  

Representative osci l - .  

) 
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a r e  shown in  F igs .  4. 3 and 4 .4 .  

de te rmines  the quality of stagnation region flow. 

signal shows an inc rease  in  intensi ty  upon the a r r i v a l  of the mixed gas 

in  the contact zone while the r e d  channel indicates  a drop in  radiat ion a t  

i t s  response  wavelengths. 

The s teadiness  of shock l aye r  intensity 

In mos t  c a s e s  the blue 

An image conver te r  c a m e r a  was a l so  used ,  mainly to a s s e s s  the 

quality of the flow by showing the shape of the incident shock wave and 

the symmet ry  of the model flow and to es tab l i sh  the volume of the 

radiating gas  sample that contr ibutes  to the radiant  energy sensed by 

the cavity gage. 

graphs obtained f rom the windowless model  with the c a m e r a  s e t  for  a 

0 . 0 5 0  ,U s exposure a r e  shown. 

taken 5~ s apar t .  

monitor and photomultiplier s ignals .  

a window in the sidewall  of the shock tube and is focused jus t  ahead of 

the model stagnation point. 

f r a m e  was obtained during the flow formation a s  indicated by the c a m e r a  

monitor .  

responding to an approximately uniform shock layer  radiance and constant 

stand-off distance.  

was achieved within the expected t ime (with the end of t e s t  gas flow c l ea r ly  

vis ible) ,  and that the shape of the bow shock wave was not per turbed  by 

the p re sence  of the windowless s l i t  a t  the stagnation point of the model.  

This  i s  i l lus t ra ted  in Figs .  4. 3 and 4 . 4  where photo- 

Each  photograph contains three  f r a m e s  

The lower t r a c e s  in these f igures  show the c a m e r a  

The photomultiplier looks through 

In F ig .  4 .4  the f i r s t  image conver te r  c a m e r a  

The next two f r a m e s  were  taken during the s teady flow co r -  

These photographs a l so  indicate that a uniform flow 
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4. 2 Total  Radiation Measurements  

All total  radiation measu remen t s  were  made using the cavi ty  gage 

descr ibed  in  section 3. 2. 

shown in Figs .  3 .16  and 3 .20 .  

and the assoc ia ted  leads  which a r e  located in  the st ing in  o r d e r  to e l iminate  

s t r a y  e l ec t r i ca l  pick-up during p l a sma  flow. 

fluoride windows, used in the model ,  w e r e  1 -mm thick and were  replaced 

for  each run. 

af ter  a s sembly  of the model.  

showed ext remely  good t r ansmiss ion  (800/0) down to 1700 A . 
specifications of lithium fluoride windows used in  the p re sen t  study in -  

dicated s h o r t  wavelength cut-off a t  approximately 1100 A . 

The a r r angemen t  of the gage in  the models  was  

It w a s  found n e c e s s a r y  to shield the gage 

Al l  quar tz  and lithium 

They were  also thoroughly cleaned with appropriate  solvents 

Sample checks of the fused s i l ica  windows 
0 

Manufac turers  

0 

The windowless model  was frequently ca l ibra ted  to determine the 

opening delay of the la tex  membrane  which s the t ime between the pulse  

of the cu r ren t  in the wire  and the uncovering of the entrance ape r tu re .  

The output of the cavity gage was  displayed on the osci l loscopes 

and photographed. 

of the gage r e s i s t ance  read .  

with the gage behind lithium fluoride and quartz  windows a r e  shown in 

F ig .  4 .5 .  In both c a s e s  the model was f i l l ed  with 50% Kr-50% He gas  

mixture  a t  p = 4 a tm.  

Next the t r a c e s  w e r e  en larged  and the t ime h i s to ry  

Representat ive oscil loscope t r a c e s  obtained 

In the c a s e  of the windowless model the p r e s s u r e  inside the model  

was s e t  to the level  of the stagnation p r e s s u r e .  A 66% Kr-34% He g a s  

-40 - 



mixture  was used a s  the buffer gas  inside the model.  

of the gage signal f rom the windowless model  a r e  shown in F ig .  4. 6. 

Oscil loscope t r a c e s  

The in te rpre ta t ion  of the measu remen t s  depends on relat ing the 

observed energy  r a t e ,  Q, enter ing the cavity gage with the dimensions of 

the radiating g a s  volume. 

To formulate  the requi red  relat ions we can  r e f e r  to the schematic  

representat ion of the gage and i t s  posit ion with r e spec t  to the radiating 

gas  which in our c a s e  i s  the shock layer .  

C AV I TY GAG E 

N f 0 3 - 6 6 2  

SKETCH C 

The gage en t rance  ape r tu re  i s  located in  plane A while the field of 

view limiting ape r tu re  (model entrance s l i t )  is in plane B. 
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Let  u s  consider  an  e lementary  volume dV located a t  r = r  (x, y,  z )  

distance from plane A. 

in  all directions i s  

The nionochromatic energy  emit ted by this volume 

of which a fraction 

by the gage entrance aper ture  i n  plane A. Here  = 0 (r) i s  the solid 

angle extended by the gage aper ture .  

energy reaching the gage will be reduced to 

L?/477 will be intercepted in the absence of absorption 

Because of se l f  absorption, however,  

This expression m u s t  be integrated over the whole radiating volume defined 

by the field of view of the gage. 

Thus 

F o r  a coll imated beam as is the case  i n  the present  configuration o f  the 

gage we can a s sume  r = yo 

At each  y position we can  also define an  average solid angle by 
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- 
We have calculated the product  of the average  solid angle a (y) and 

the a r e a ,  Axzfor the geometry  used in the p r e s e n t  exper iments  and found 

that i t  i s  a lmost  constant  along the y axis  and can be rep laced  by i t s  

average value 0 Axz a Hence Eq. (4. 3)  can  be simplified to give 
- 

f rom which 
Y 1  

m 

with yz  - y1 = Lo In Eq. (4. 6 )  we recognize the in tegra l  to be equal to 

radiant  intensity,  I a s  was  given in  Eq. (2. 28) .  

The r e f o r  e 

V 

Q I =  - (4.7) 

xz 52A 

Thus the intensity,  I, can  be obtained from the given Q, which follows 

f rom the reduced gage s ignal  and the gage geometry  a s  outlined in section 3. 2. 
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5. DISCUSSION O F  RESULTS 

Data obtained from the shock tube blunt model  t e s t  flow using the 

window and windowless cavity gage measu remen t  techniques descr ibed 

in  the l a s t  section a r e  shown in Figs .  5. 1 and 5. 2. In F i g .  5. 1 we have 

compared  data obtained with quar tz  and LiF windows. 

predict ions of Breene ( A >  0 . 1 6 ~  ), which include f r e e - f r e e J  free-bound 

and molecular  band radiat ion,  and r e su l t s  of Allen ( A >  0. 2Oy) which a l so  

The theoret ical  

include bound-bound radiat ion,  a r e  shown. 

Compared in F ig .  5. 2 a r e  experimental  r e su l t s  obtained with quartz  

windows and with the windowless configuration (with He-Kr mixture  a s  

the buffer gas) .  Models used,  as indicated by different symbols ,  were  

the 1. 5 in. -d iameter  flat  face model  and the R N  = 1-in. hemispher ica l  

model.  Theoret ical  r e su l t s  of Allen ( A >  0. 2/,4 and all A )  and the r e su l t s  of 

interpretat ion of Biberman flux calculations for  the shock tube conditions 

assuming a 1 c m  stand-off distance a r e  a l so  shown. 

r ep resen ted  by the c ross -ha tched  band for r easons  explained in  Section 2. 2. 

The data in  Figs .  5.1 and 5 .2  have been re ferenced  to a 1 cm thick shock 

The la t te r  one is 

l aye r  value f rom the shock stand-off distance measu remen t s  of 0. 28 cm 

for  the hemispher ica l  model  and 0. 76 cm for  the flat  faced model  to allow 

the r e su l t s  to be m o r e  eas i ly  compared.  

due to self-absorpt ion - i s  requi red  by the windowless data  to account 

for  this  adjustment ,  The indicated cor rec t ions  to the window data a r e  

negligible because of low self-absorption a t  A > A theoret ical  

A theore t ica l  co r rec t ion  of -97'0 

0 .  2 p 
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correc t ion  of -110~0 in  the windowless data to account for  the shor t  wavelength 

radiation cut-off by K r  i n  the model  nullifies essent ia l ly  the cor rec t ion  for  

self-absorption, Finally,  a conservative es t imate  of self-absorption in  the 

stagnation region boundary layer  was made a t  the velocity leve l  of the 

windowless tests and a t  a potentially seve re  absorption density level. 

ayparent  reduction in  intensity of 8% was indicated for  these conditions; 

however,  no cor rec t ion  for  this effect has  been made in  the data. 

An 

F i r s t ,  in Fig. 5. 2 it  is seen  that the windowless data a re  considerably 

higher th;m those f rom the window models.  

bution to the radiant intensity between the shor t  wavelength cut-offs of 

quar tz  and of Kr .  

Allen predictions for  A >  

wavelength cut-off (calibration of s eve ra l  samples  of those used in our tests 

showed 80% t ransmiss ion  at 0. 1 7 y  

calculations,  the contribution to intensity between 0. 17p and 0. 2~ is 

not considered to be significant. 

to 

experimental  data suggesting that the line radiation in  the visible and 

i n f r a r e d  is 20% to the total  intensity in this  spec t ra l  range.  

fu r the r  confirmed by Nerem (31)  who has  compared the experimental  

equilibrium intensity r e su l t s  for  air of s eve ra l  invest igators  (32)  (33 )  (34) 

taken with solid windows with cut-off levels  to  as  low as 0. 1 7 p  . 
found a reasonably good agreement  between these r e su l t s  including his data 

The data show a la rge  contr i -  

Second, the quartz  data are in  a good agreement  with 

0 .  2 p  . Although the quartz  windows had a shor t  

) below the range of the theoretical  

Breene '  s predictions which extend down 

= 0 .  16, but do not include line radiation lie on the low side of the 

This is 

He h a s  
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and the long wavelength predictions of Breene. Third,  the windowless 

data l ie in the range of the Biberman,  e t  a1 predictions.  Fourth,  the 

agreement  between the quartz data for the different shock stand-off d i s -  

tance indicates that there  is a negligible self-absorption effect a t  long 

wavelengths (as  expected). More  importantly,  since the normal ized  data 

(to 1 cm gas layer  thickness) for the sma l l  standoff distance should be 

l a r g e r  than those fo r  the l a rge r  value i f  s t rong coupling effects were  

p re sen t ,  these resu l t s  imply that the effect of coupling i s  sma l l  for the 

p re sen t  tes t  conditions ( 

Of cour se ,  an effect  of the order  predicted in  F ig .  2. 9 could be hidden 

within the sca t te r  of the data in  Fig.  5. 2. Therefore ,  conclusions on the 

importance of coupling in  a radiating flow based  on the present  data mus t  

be considered to be prel iminary.  

In Fig. 5 .1 ,  the quartz and lithium fluoride data compar ison  sug- 

i s  of the o rde r  of 0. 1 for the flat faced body). 

ges t s  a higher intensity level in  the la t te r  case .  

found L i F  to be a difficult ma te r i a l  to work with; the quality and, possibly,  

the cut-off wavelength can vary  f r o m  sample  to sample.  

the windows af ter  tes t  runs revealed that they were  c razed .  

is  of par t icular  importance,  since we have not determined i f  the crazing 

occurs  during the t e s t  t ime. Therefore ,  we believe that a definite con- 

clusion cannot now be drawn f rom our data concerning the magnitude of 

the contribution to the intensity (mostly U V  l ines)  in the region between 

the (potentially available) 0 . 1  lp 

However,  we have 

Examination of 

This problem 

shor t  wavelength cut-off usually quoted 
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for  LiF and that for  quartz .  

by Nerem ( 3 1 )  who, on the bas i s  of s eve ra l  data obtained with LiF windows, 

in fer red  that there  is  no substantial  contribution to the total  radiation 

due to emission in the wavelength region of 0. 12 to 0 ,  1 7 p  . 

P r e s e n t  r e su l t s  contradict  conclus io~i  drawn 
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6. SUMMARY O F  RESULTS AND CONCLUSIONS 

Resul ts  have been presented  from a study of high tempera ture  air  

radiance over  range of equilibrium, gas  p rope r t i e s  of i n t e re s t  to  supe r -  

orb i ta l  r e - en t ry  vehicles;  the following points a re  of in te res t :  

in  the vacuum U V  region of the spec t rum (defined h e r e  to be 

1 )  radiation 

< 1600 A ) 
0 

can be expected to be important;  2)  because of the l a r g e  c r o s s  section of 

the radiative mechanisms in  the vacuum U V ,  self-absorption in  a radiating 

gas  layer  m u s t  be included in the analysis  of energy  fluxes through such 

a layer  with a p rope r  r ega rd  for the wavelength dependence of the absorption 

coefficient; 3 )  coupling between the radiative and convective energy  fluxes 

may  significantly reduce the total  radiative heat  t r a n s f e r  i n  comparison 

to that calculated for  an isoenergetic l aye r ;  however,  the prediction of 

such an  effect is  complicated by the wavelength dependent self-absorption 

proper ty  of the gas;  4 )  analysis of total  radiation predictions of Biberman 

e t  a1 indicate a discrepancy which was co r rec t ed  by correlat ing the given 

data according to the product of p r e s s u r e  and gas layer  thickness ,  pL;  

5) a body scale  p a r a m e t e r ,  RNO' 6,  has  been found to approximately 

c o r r e l a t e  the uncoupled radiative flux of Biberman;  the difference between 

this dependence and that for  a simple t ransparent  shock layer  g a s ,  R 

indicates the integrated influence of self-absorption in the shock l aye r ;  

7 )  the predictions of Biberman r e su l t  in  re la t ively high values of the 

coupling p a r a m e t e r  ( 

N'  

= 0 . 1 )  for  body dimensions of i n t e re s t  at  velocit ies 

of the o rde r  at the Ea r th  escape value; and 8 )  for  a s imple type of en t ry  
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vehicle, I? will maximize before the peak uncoupled heating point with 

the probable r e su l t  not only in  a reduction of radiative heating but a lso 

in a shift  of the maximum radiative heating point to l a t e r  t imes  in the 

t ra jectory.  

A shock tube experimental  study has  been conducted to investigate 

seve ra l  of the total  radiative proper t ies  of a i r .  I t  has  been shown that an 

electr ical ly  driven "conventional" shock tube is capable of producing useful 

model  stagnation region t e s t  flows to the 60 ,  000 f t / s e c  flight velocity 

simulatior. level. At such conditions, the r values for  models  of prac t i -  

c a l  s ize  a r e  far in excess  of 0 . 1 ,  and the re fo re ,  important  combined 

effects of self-absorption and coupling might be expected. A fa s t  response 

total  radiance measurement  technique that employs a thin film cavity 

sensing element  has  been developed and used in  the study. The cavity 

gage has  been combined with blunt models  that p e r m i t  the sensing of 

energy radiated from the shock layer  with and without solid windows in 

the optical path. In its windowless configuration, the measu remen t  

sys tem as  present ly  developed has  a s h o r t  

880 A . 

cut-off of approximately 
0 

According to the available predict ions,  this  pe rmi t s  the m e a s u r e -  

ment  of a lmost  all radiation energy a t  the conditions of i n t e re s t .  

Experimental  intensity da ta ,  obtained in  the range of a simulated 

flight velocity between 38, 000 and 49, 000 f t / s e c ,  show that there  is a 

significant contribution to intensity in the vacuum U V  portion of the 

spec t rum.  The windowless data tend to ag ree  with the available total  
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radiance predict ions that include spec t r a l  l ine contributions.  

length data obtained with quartz  windows a r e  in  f a i r l y  good agreement  

with the predict ions of Allen fo r  the corresponding wavelength reg ime.  

Also,  there  i s  an  indication of a contribution to intensi ty  in  the wavelength 

region between the quar tz  and LiF cut-off va lues . '  A p re l imina ry  a s s e s s -  

ment  of the coupling effect  for the range of conditions studied suggests  

that i t  i s  hidden within the sca t t e r  of the p r e s e n t  data.  

Long wave - 

The ef fec ts  of the boundary layer  have not been included in  the 

p re sen t  study except for  the est imat ion of i t s  impor tance  in  the absorption 

of energy radiated f rom the shock layer  for  a specif ic  t e s t  condition. The 

boundary layer  i s  of concern  in flight si tuations not only because of this 

effect ,  but a l so  because absorbed radiation wil l  influence the boundary 

layer  proper t ies  and, therefore  , modify the convective heat  t r ans fe r .  

This  could be of par t icu lar  importance for  an  ablating body where relat ively 

complex molecules  m a y  exis t  near  the sur face  of the body. 

empir ica l  t rea tment  of this problem,  applied to the determinat ion of the 

per formance  of ablation ma te r i a l s  subjected to combined radiative and 

convective heating in superorb i ta l  flight, is given i n  Ref. 35. 

A s e m i -  
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Figure 2.  2 - Emiss iv i ty  of a i r  as  a function of p r e s s u r e  and gas layer  thickness 
at  T = 1 2 , 0 0 0 0 K .  
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Figure  2 . 4  - Emiss iv i ty  of a i r  a s  a function of p r e s s u r e  and gas layer  thickness 
at  T = 1 7 , 0 0 0 ° K .  
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Figure  3.7 - Blunt model stagnation p r e s s u r e  as a function of shock velocity in 
a shock tube flow. 
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Figure  3 .10  - Geometry  of the cavi ty  gage. 

F igure  3. 11 - Total radiation cavity gage. 
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Figure  3.. 1 7  - Oscilloscope t r a c e s  of cavity gage response with LiF window shows 
s t rong photoelectric effect  when model fi l led with argon. 
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Figure  3.18 - Total collision c ross -sec t ions  of s eve ra l  gases  for  e lec t rons  with 
var ious energ ies ,  
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Figure  3.19 - Oscilloscope t r a c e  of cavity gage xesponse with LiF window. Model 
d with 500/oKrP50% He gas  mixture .  
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Figure 3.20 - Windowless cavity gage - model  sys tem,  

Figure 3. 21 - Photograph of the cylindrical ,  windowless model.  Arrow indicates 
the wire  used for  rupturing la tex membrane .  
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Figure  4. 3 - Image converter  c a m e r a  photographs of stagnation region shock 
layer  on a hemispherical  model.  
f rom c a m e r a  monitor  and response of photomultiplier viewing 
stagnation region flow f rom sidewall. 
and init ial  tube p r e s s u r e  w e r e  28 ,500  f t  / s e c  and 0.33 t o r r  r e -  
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The incident shock velocity 
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Figure  4.4 - Image converter  c a m e r a  photographs of stagnation region shock 
layer  of a cyl indrical  model taken f r o m  sidewall. Lower photo- 
graph shows signal f rom c a m e r a  monitor and response of photo- 
mult ipl ier  viewing stagnation region flow f rom sidewall. 
incident shock velocity and initial tube p r e s s u r e  w e r e  28, 500 f t / s e c  
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and 0. 3 3  t o r r  respectively.  
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Figure 4 .5  - Oscilloscope t r a c e s  of cavity gage response with quar tz  and LiF 
windows. 
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